Faster Segmentation Algorithm for Optical Coherence Tomography Images with Guaranteed Smoothness

نویسندگان

  • Lei Xu
  • Branislav Stojkovic
  • Hu Ding
  • Qi Song
  • Xiaodong Wu
  • Milan Sonka
  • Jinhui Xu
چکیده

This paper considers the problem of segmenting an accurate and smooth surface from 3D volumetric images. Despite extensive studies in the past, the segmentation problem remains challenging in medical imaging, and becomes even harder in highly noisy and edge-weak images. In this paper we present a highly efficient graph-theoretical approach for segmenting a surface from 3D OCT images. Our approach adopts an objective function that combines the weight and the smoothness of the surface so that the resulting segmentation achieves global optimality and smoothness simultaneously. Based on a volumetric graph representation of the 3D images that incorporates curvature information, our approach first generates a set of 2D local optimal segmentations, and then iteratively improves the solution by fast local computation at regions where significant improvement can be achieved. It can be shown that our approach monotonically improves the quality of solution and converges rather quickly to the global optimal solution. To evaluate the convergence and performance of our method, we test it on both artificial data sets and a set of 14 3D OCT images. Our experiments suggest that the proposed method yields optimal (or almost optimal) solutions in 3 to 5 iterations. Comparing to the existing approaches, our method has a much improved running time, yields almost the same global optimality but with much better smoothness, which makes it especially suitable for segmenting highly noisy images. Our approach can be easily generalized to multi-surface detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images

Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...

متن کامل

Experimental Visualization of Labyrinthine Structure with Optical Coherence Tomography

Introduction:Visualization of inner ear structures is a valuable strategy for researchers and clinicians working on hearing pathologies. Optical coherence tomography (OCT) is a high-resolution imaging technology which may be used for the visualization of tissues. In this experimental study we aimed to evaluate inner ear anatomy in well-prepared human labyrinthine bones.Materials and Methods:Thr...

متن کامل

Topology guaranteed segmentation of the human retina from OCT using convolutional neural networks

Optical coherence tomography (OCT) is a noninvasive imaging modality which can be used to obtain depth images of the retina. The changing layer thicknesses can thus be quantified by analyzing these OCT images, moreover these changes have been shown to correlate with disease progression in multiple sclerosis. Recent automated retinal layer segmentation tools use machine learning methods to perfo...

متن کامل

User-guided segmentation for volumetric retinal optical coherence tomography images.

Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guide...

متن کامل

Automatic segmentation of clinical OCT images for the determination of epithelial thickness changes in laryngeal lesions

Automated classification of laryngeal lesions using optical coherence tomography data can be helpful in making a faster and safer diagnosis. A change in the epithelial layer thickness seems to be an effective indicator for laryngeal cancer and its precursors. Lesions with different grades of malignancy were scanned with a time domain OCT system during microlaryngoscopy. Every diagnosis was conf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011